Table 5. Bond distances in the Cu(II)(en)₂. H₂O cation, corrected for thermal motion

For C-C bonds the motion of the copper atom has been subtracted from the carbon atoms.

Bond Uncorrected limit Riding body	Upper limit
Cu(3)–N(5) 2·004 Å 2·005 Å 2·015 Å 2·014 Å	
Cu(3) - N(6) 2.034 2.034 2.036 2.042	
Cu(3) - N(7) 2.004 2.006 2.017 2.012	
Cu(3)-N(8) 2.017 2.018 2.026 2.027	
Cu(3)-O 2.441 2.442 2.449 2.450	
C(5) - N(5) 1.454 1.456 1.463 1.458	
C(6) - N(6) 1.469 1.478 1.486 1.475	
C(7) - N(7) 1.424 1.445 1.465 1.429	
C(8) - N(8) 1.448 1.469 1.499 1.452	
C(5) - C(6) 1.488 1.491 1.492	1•528 Å
C(7) - C(8) 1.408 1.408 1.411	1.586

- BUSING, W. R. & LEVY, H. A. (1967). Acta Cryst. 22, 457.
- COOPER, D. & PLANE, R. A. (1966). Inorg. Chem. 5, 1677.
- CROMER, D. T. (1968). Unpublished work.
- CROMER, D. T. & LIBERMAN, D. (1970). J. Chem. Phys. 53, 1891.
- DOYLE, P. A. & TURNER, P. S. (1968). Acta Cryst. A 24, 390.
- HAMILTON, W. C. (1964). Statistics in Physical Science, p. 158. New York: The Roland Press Co.
- HAMILTON, W. C. (1965). Acta Cryst. 18, 502.
- JOHNSON, C. K. (1970). Crystallographic Computing, p. 220. Copenhagen: Munksgaard.
- LARSON, A. C. & CROMER, D. T. (1972). To be published.
- MOROSIN, B. (1969). Acta Cryst. B25, 19.

- ROLLETT, J. S. (1970). Crystallographic Computing, p. 167. Copenhagen: Munksgaard.
- ROOF, R. B. JR, LARSON, A. C. & CROMER, D. T. (1968). Acta Cryst. B24, 269.
- STEWART, R. F. (1969). J. Chem. Phys. 51, 4569.
- STEWART, R. F. (1970). J. Chem. Phys. 53, 205.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175.
- STOUT, G. H. & JENSEN, L. H. (1968). X-ray Structure Determination, A Practical Guide, p. 457. New York: The MacMillan Co.
- WASER, J. (1963). Acta Cryst. 16, 1091.
- WILLIAMS, R. J., CROMER, D. T. & LARSON, A. C. (1971). Acta Cryst. B27, 1701.

Acta Cryst. (1972). B28, 864

The Crystal Structure of Tin(II) Sulphate

By J. D. DONALDSON AND D. C. PUXLEY

Department of Chemistry, Chelsea College of Science and Technology, Manresa Road, London, S.W.3., England

(Received 13 July 1971)

Tin(II) sulphate, SnSO₄, crystallizes in the orthorhombic system, space group *Pnma*, with four formula units in a cell with a=8.799, b=5.319, c=7.115 Å. The intensities of 418 independent reflexions were obtained by counter methods and the structure refined by least-squares methods to a conventional *R* value of 4.4%. The structure consists of a framework of sulphate groups linked by O-Sn-O bridges. The tin(II) atoms have typical pyramidal three coordination with Sn-O bond distances of 2.27, 2.27 and 2.25 Å and O-Sn-O angles of 79.0, 77.1 and 77.1°.

Introduction

Rentzeperis (1962) described a crystal-structure determination of $SnSO_4$ on the basis of measurement of the intensities of 58 powder reflexions. This structure was based on the assumption that $SnSO_4$ had the barite structure (James & Wood, 1925) although it had previously been suggested by Donaldson & Moser (1960) that this was unlikely in view of the large difference in the ionic radii of Ba^{2+} and Sn^{2+} . This $SnSO_4$ structure, along with the other known tin(II) structures (Donaldson, 1967), has been used in the interpretation of ¹¹⁹Sn Mössbauer data. (Donaldson & Senior, 1969) It is however important to have a more accurate knowledge of the details of the environment of the tin atoms in $SnSO_4$ and for this reason we have carried out a full single-crystal three-dimensional structure analysis on the material.

Experimental

The crystals of $SnSO_4$ which were prepared by Donaldson & Moser's (1960) method are not hygroscopic as previously reported.

Crystal data

(Rentzeperis, 1962; Donaldson & Moser, 1960). Tin(II) sulphate, SnSO₄, M.W. 214·8, orthorhombic, $a=8\cdot799\pm0\cdot001$, $b=5\cdot319\pm0\cdot001$, $c=7\cdot115\pm0\cdot001$ Å, $V=333\cdot0$ Å³, $D_c=4\cdot185$ g.cm⁻³ for Z=4, $D_m=4\cdot21$ g.cm⁻³. Total number of electrons per unit cell, F(000)=392. Systematic absences; 0kl for k+l=2n+1, hk0 for h=2n+1. Possible space groups; *Pnma* or $Pn2_1a$.

The lower symmetry group $(Pn2_1a)$ was at first assumed but least-squares refinement of the atomic positions showed convergence towards the centrosymmetric space-group positions, which were then used for the final refinement.

Structure determination

Data were collected from a small acicular crystal (diameter 0.133 mm) mounted along the *b* axis on a Hilger-Watts Y-190 single-crystal linear diffractometer using Mo $K\alpha$ radiation. Equivalent reflexions from four octants were collected to give 418 independent reflexions of above background intensity. Lorentz and polarization corrections were applied but no allowance was made for the small effects of absorption ($\mu R = 0.517$) or extinction.

The positions of the Sn and S atoms were determined from a three-dimensional Patterson synthesis assuming the lower-symmetry space group $Pn2_1a$. The positions of the O atoms were obtained from a difference Fourier synthesis calculated using the Sn and S atom positions.

Full-matrix least-squares refinement of layer scale factors, atomic positions and isotropic temperature factors indicated convergence towards the positions corresponding to the centrosymmetric space group, which was then used for the final refinement. Refinement of layer scales, atomic positions and anisotropic temperature factors converged with $R = \sum ||F_o| |F_c|/(\sum |F_o|)$ as 0.044 using unit weights throughout. Atomic scattering factors for neutral Sn, S and O atoms were taken from International Tables for X-ray Crystallography (1962). A final difference Fourier map showed peaks of -18 and +6 as the greatest negative and positive deviations relative to +999as the peak corresponding to the heaviest atom present (Sn, 50 electrons). The final observed and calculated structure factors are listed in Table 1.

The final atomic coordinates, temperature factors and their standard deviations are given in Table 2. The significant bond distances and angles based on the coordinates of Table 2 are listed in Table 3 along with their standard deviations.

The pair of diagrams in Fig. 1 provide a stereoscopic view of the unit cell as seen from a direction perpendicular to the $(2\overline{5}3)$ plane. Fig. 2 shows the environment of the tin atom in SnSO₄.

The computer programs used were (i) NUCLS4, a version of the Ibers and Doedens least-squares program, (ii) FORDAP, the Zalkin Fourier program, (iii) ORFFE, Busing and Levy's function and error program and (iv) *CELLPLOT*, an Algol program written for the Elliott 503 computer and graph plotter. This draws ordinary or stereoscopic views of a unit cell

Table 1. Observed and calculated structure factors (\times 10)

for SnSO.																
		K=0				у К=1	0. 2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		K=3				K=4		
н	L	F(0)	F(C)	н	1.	F(0)	F(C)	н	I.	F(0)	F(C)	н	L	F(0)	F(C)	
0	2	1689	1992	5	6	700	717	2	1	1121	1201	10	1	426	400	
ő	8	331	345	6	6	1202	1219	2	23	573 806	548 772	10 10	2 3	391 263	392 274	
;	1	351 735	286 654	6 6	1	328 926	294 908	2	4 5	380 213	369 217	10	4	263	273	
1	3	120 905	106 839	6 6	4 5	652 147	646 147	3 3	12	219 332	186 316			K=5		
;	5	288	260	7	2	703	704	3	3	839	807	H	L	P(D)	F(C)	
i	7	213	267	ż	4	741	744	3	5	423 839	411 830	0	3	593	587	
1	8 9	479	487	7	5 6	101 681	97 705	3	6 7	51 8 481	524 478	0	5 7	441 290	403 290	
2	0 2	1121 912	1163 874	8 8	0	953 157	946 142	4	0	895 611	890 595	;	2 3	263 443	254 430	
2	3 4	201 933	211 870	8 8	23	777 337	774	4	2	557 384	526	1	4	235	212	
2	5	348 343	360	8	4	440	431	4	4	559	559	i	6	161	158	
2	7	436	429	9	2	154	157	4	6	380	382	1	9	482	392	
3	2	667	583	9	3	306	93 315	5	2 4	126 274	116 287	2	1 2	785 533	844 517	
3 3	3 4	857 490	775 440	10 10	0	220 458	226 455	5 5	6 7	508 157	549 171	2 2	3 4	579 272	553 263	
3	5 6	671 647	618 638	10 10	23	188 414	185 418	6	0	1045	1060	2	5	157	145	
3	7	577	566		-	v_0		6	2	800	800	3	ï	126	109	
4	õ	300	281			K=2		6	5	131	125	3	2	173 487	166 467	
4	1	332	320	н	r	F(O)	F(C)	6 7	6 2	117 572	100 587	3 3	5 6	510 350	502 344	
4	3 4	1242 410	1213 380	0	24	1055 627	1024 623	777	3 4	180 635	180 647	3	7 8	300 240	303 233	
4	5 6	226 212	195	0	6 8	86 155	93 174	7	5	139	135	4	0	452	470	
5	1	236	219	ĩ	ĩ	438	402	8	ŏ	741	751	4	2	307	302	
5	3	838	794	ł	3	358	314	8	3	609 254	618 265	4	3 4	339 387	326 389	
5 5	4 5	531 660	507 631	1	4 5	1050 122	1037 88	8 8	4 5	352 213	352 214	4 5	6 2	323 161	311 155	
5	6 7	351 548	345 571	1	6 7	1000 84	1034 95	9	2	165	165	5	4	290	296	
6	ò	683	637	į	8	496	509	10	è	165	165	5	7	726	121	
6	2	431	379	2	0	1145	1204	10	2	423	144	6	8	339 646	349 653	
6 6	3 4	909 106	880 125	2	1 2	844 944	793 928	10	3	364	378	6 6	1 2	233 510	229 506	
6 6	5 6	381 257	376 208	2	3 4	575 841	525 807			K=4		6 7	42	371 392	377 428	
67	7	163 138	136 126	2	5	339 289	327	н	L	F(0)	F(C)	7	4	480	485	
1	3	315	308	2	7	269	268	0	2	1077	1115	8	õ	618	640	
7	5 6	508 212	178	3	3	550	513	0	8	612 244	560 262	8	2	507 193	516 209	
78	7 0	550 688	553 652	3 3	5 6	456 296	444 338	1	12	124 457	116 424	8 8	45	279 150	270 154	
8 8	12	515 358	508 330	3 4	7	438 898	465	1	4	620 114	600 117	9 10	4	168 168	160 130	
8	3	436	435	4	1	1043	1055	į	6	655	670	10	1	249	254	
8	5	301	319	4	3	896	909	1	8	344	353	10	3	235	252	
9 9	12	238 277	222 267	4	4 5	439 175	429 165	2	9 0	200 661	207 682			K=6		
9 9	3 4	486 420	489 425	4	6 1	129 353	122 348	2 2	12	136 573	113 561	н	L	F(0)	F(C)	
9 10	5	521 726	523 719	5	2	232	225	2	3 ∡	189	179	0	2 4	472	564 298	
10	1	540	516	5	4	436	435	2	5	255	261	1	2	294	354	
10	3	358	367	5	6	298	307	2	7	300	311	i	4	526	503	
11	1	174	141	6	7 0	646 294	669 267	3	1 2	102	94 256	1	6 8	532 286	534 283	
		K=1		6 6	1 2	807 136	802 121	3 3	3 4	479 248	460 244	2	2 3	383 229	402 228	
н	L	F(0)	F(C)	6	3 4	670 181	680 1.82	3	5	434 418	426	2	4	403	384	
0	1	996	961	6	5	351	360	3	7	396	407	2	6	197	168	
ő	5	684	627	6	7	194	199	4	õ	261	238	3	3	203	254	
0	7	371 130	366 112	77	3 4	229 122	233 128	4	12	994 251	987 240	3 3	5 6	266 203	244 173	
;	2 3	760 931	661 844	7 8	5 0	393 684	427 703	4	3 4	761 289	759 256	3 3	7 8	272 246	253 251	
1	4	443	386	8 8	1 2	665 393	677 397	4	5	142	129	4	0	300	301	
i	6	303	298	8	3	515	521	5	1	179	173	4	2	274	272	
i	8	131	.94	8	5	289	303	5	3	571	570	4	4	223	215	
1 2	9. 0	556 1186	599 1251	9	12	141 298	144 393	5	4 5	357 489	358 483	5 5	12	168 157	171 149	
2	1 2	1429 916	1711 863	9 9	3 4	300 443	316 469	5 5	6 7	253 400	251 417	5 5	3 4	506 252	512 248	
2	3	1061	1007	10	0	479 486	490 506	6	0	418 749	419 759	5	5	483	466	
2	5	279	261	10	2	353	361	6	2	279	263	5	7	420	376	
2	8	207	197	19	د	524	340	6	5	277	278	6	1	415	413	
3 3	1 2	138 414	128 369			£=3		6 7	6 3	159 200	167 193	6 6	3 5	358 189	353 191	
3	3 4	909 486	898 454	н	I.	F(0)	F(C)	777	5 6	340 120	358 128	78	5 0	217 337	208 377	
3	5	931	910	0	1	902	924	7	7	404	412	8	1	320	334	
3	6 7	534	605 527	0	5	551	513	8	1	347	348	8	3	285	217	
4	0	1155 936	1145 906	0	7 2	267 577	276 524	8	2 3	259 308	258 313	8 9	5 2	189 177	183 189	
4	2	638 554	592 522	1	3	588 469	548 422	8 8	4 5	153 220	150 239	9 9	3 4	200 272	189 282	
1	4	674	666	į	5	523	522	9	í	151	157	10	0	289	279	
4	6	472	459	i	7	585	62.8	9	3	347	355	.0	'	500		
5	12	113 260	97 230	1	8	99 460	88 51 7	9 9	4 5	363	324 390					
	4	464	455	2	0	733	731	10	0	516	524					

Table 2. Positional and thermal atom parameters $(\times 10^4)$

The figures given in parentheses are the standard deviations in the parameters.

The anisotropic temperature factors are of the form $\exp\left[-(B_{11}h^2+B_{22}k^2+B_{33}l^2+2B_{12}hk+2B_{13}hl+2B_{23}kl)\right]$.

	x	у	z	B_{11}	B ₂₂	B ₃₃	B_{12}	B ₁₃	B_{23}
Sn	2100 (1)	2500	2165 (2)	39 (1)	114 (31)	59 (2)	0	-13(2)	0
S	774 (4)	2500	6795 (5)	16 (4)	46 (33)	28 (7)	0	- 1 (4)	0
O(1)	9240 (13)	2500	6025 (19)	14 (14)	153 (63)	109 (29)	0	-26(16)	0
O(2)	1962 (14)	2500	5318 (16)	51 (16)	104 (59)	16 (22)	0	27 (15)	0
O(3)	1025 (9)	217	8005 (12)	55 (10)	35 (35)	79 (17)	13 (15)	11 (11)	26 (18)

Table 3. Interatomic distances (Å), angles (°) and errors

S-O distances		Sn-O distanc	es
S-O(1)	1.457 (12)	Sn-O(2) A	2.246(11)
S-O(2)	1.482 (12)	Sn-O(3) D	2.273 (8)
S-O(3)	1.505 (9)	Sn-O(3') E	2.273 (8)
S-O(3')	1.505 (9)	Sn-O(1) G	2.949 (12)
• •		Sn-O(2) D	3.079 (6)
O-S-O bond an	gles	Sn-O(2) E	3.079 (6)
O(1) - S - O(2)	112.8 (8)	Sn-O(3) B	3.109 (9)
O(1) - S - O(3)	110.6 (5)	Sn-O(3) C	3.109 (9)
O(2) - S - O(3)	107.6 (4)	Sn-O(1) B	3.181 (7)
O(3) - S - O(3')	107.6 (7)	Sn-O(1) C	3.181 (7)
	. ,	Sn-O(3) F	3.336 (9)
O-Sn-O bond a	ngles	Sn-O(3') F	3.336 (9)
O(2) A-Sn-O(3)	D = 77.1 (3)		
O(2) A-Sn- $O(3)$	E 77.1(3)		
O(3) D-Sn- $O(3)$	E 79.0 (5)		

from any angle. Unlike previous plotting programs (Johnson, 1965; Cole & Adamson, 1969) it draws clinographic projections on crystallographic planes of space filling or 'ball and stick' models. Details of this program are available from the authors.

Discussion

The positions of the heavy Sn atoms obtained in the present work are close to those found by Rentzeperis (1962). The agreement for the S atoms is also reasonable but the changes in the oxygen atom positions lead to considerable differences in the important details of the tin environment.

Although the cell dimensions and powder diffraction data for $SnSO_4$ are very similar to those of $BaSO_4$, a comparison of their ionic radii (Table 4) suggests that the tin atom is too small to form a stable structure of the $BaSO_4$ type. The cell dimensions and other data for the barite minerals ($SrSO_4$, $PbSO_4$) which are isostructural with $BaSO_4$ are also given in Table 4.

 Table 4. A comparison of tin(II) sulphate with the barite group minerals

Space group	BaSO ₄	PbSO ₄	SrSO ₄	SnSO4
	Pnm	Pnma	Pnma	Pnma
a (Å)	8·85	8·45	8·36	8.80
b (Å)	5·43	5·38	5·35	5.32
c (Å)	7·13	6·93	6·87	7.12
V (Å ³)	342·1	315·0	306·5	333.0
Cationic radius (Å)	1.35	1.21	1.13	0.85

Although this work confirms that $SnSO_4$ and $BaSO_4$ are not isostructural, tin(II) sulphate could be considered as a highly distorted form of the barite structure. In $SnSO_4$ the tin is surrounded by twelve oxygen atoms as in $BaSO_4$ but the Sn–O bond distances vary from 2.25 to 3.34 Å. Three of the oxygen atoms are much closer to the tin atom than the rest (2.25, 2.27 and 2.27 Å) and the next shortest Sn–O bond is 2.95 Å. The important feature of the $SnSO_4$ structure is the pyramidal three coordination of the tin atom, shown in Fig. 2. There are three Sn–O bonds of 2.25, 2.27 and 2.27 Å and pyramidal bond angles of 79.0, 77.1 and 77.1°.

This pyramidal three coordination of tin in its II⁺ oxidation state is found in a number of stannous materials (Donaldson, 1967) including SnS (Hofmann, 1935), SnSe (Okazaki & Ueda, 1956), orthorhombic SnF₂ (Donaldson & Oteng, 1967), NaSn₂F₅ (McDonald, Larson & Cromer, 1964), SnCl₂ (Rundle & Olson, 1964), KCl. SnCl₃. H₂O (Kamenar & Grdenić, 1962) and KSn(HCO₂)₃ (Jelen & Lindquist, 1969). This environment of the tin atoms can be explained either in terms of covalent bonding involving sp³ hybridization of the tin(II) orbitals or in terms of electrostatic crystal-field distortions (Orgel, 1959; Donaldson, 1967). In the covalent approach, the sp^3 hybrid would produce three covalent bonds to nearest-neighbour atoms and a fourth orbital occupied by a lone-pair. The lone-pair electrons would prevent the close approach of further atoms in this direction and bond-pairlone-pair repulsion arguments would predict X-Sn-X bond angles of less than 109°. The electrostatic treatment considers a displacement from the regular octahedral coordination, which allows mixing of the ground state $(5s^2)$ of a Sn²⁺ ion with the excited state $(5s^15p^1)$. In the Sn²⁺ ion, the separation of the ground state and the first excited state is of the order of 6.64 eV. In such circumstances it is possible to gain extra stabilization energy by an unsymmetrical distortion of the tin environment such as that found in SnSO₄.

The sulphate group in SnSO₄ is slightly distorted from regular tetrahedral symmetry by Sn–O interactions and the S–O bond lengths vary from 1.46 to 1.51 Å. These observations are in agreement with the infrared data of Hezel & Ross (1966) for the SO₄ group in SnSO₄.

We are grateful to Professor H. F. W. Taylor for permission to use the Aberdeen University Hilger-

Fig.1. Stereoscopic diagram of the unit-cell of SnSO₄. Atom code as for Fig.2.

Fig. 2. The environment of the tin atoms in SnSO₄.

Watts Y-190 linear diffractometer and to Mr A. Howie for his work in collecting the data. One of us (D.C.P.) is also grateful to the SRC for a studentship.

References

Cole, A. J. & Adamson, P. G. (1969). Acta Cryst. A 25, 535. Donaldson, J. D. (1967). Progr. Inorg. Chem. 8, 287.

Acta Cryst. (1972). B28, 867

A Study on the Diffraction Enhancement of Symmetry

BY F. MARUMO AND Y. SAITO

The Institute for Solid State Physics, The University of Tokyo, Roppongi-7, Minato-ku, Tokyo 106, Japan

(Received 20 May 1971)

The condition for the diffraction enhancement of symmetry has been re-examined. From a general expression for the square of the structure amplitude for the structures composed of two kinds of parallel layers, it has been shown that the diffraction enhancement of symmetry may occur much more generally than previously supposed. Two kinds of constituent layers can have arbitrary thickness. It has been shown that the twofold rotational axis previously assumed for the local symmetry of each layer can be replaced by a twofold screw axis, a mirror plane, or a glide plane. The enhancement can take place not only from triclinic symmetry to the monoclinic Laue symmetry, but also from monoclinic symmetry to the orthorhombic Laue symmetry.

Introduction

Rose, Takeda & Wones (1966) reported that a triclinic polytype of mica produced monoclinic X-ray diffrac-

- DONALDSON, J. D. & OTENG, R. (1967). Inorg. Nucl. Chem. Letters, 3, 163.
- DONALDSON, J. D. & SENIOR, B. J. (1969). J. Inorg. Nucl. Chem. 31, 881.
- HEZEL, A. & Ross, S. D. (1966). Spectrochim. Acta, 22, 1949. HOFMANN, W. (1935). Z. Kristallogr. 92, 161.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- JAMES, R. W. & WOOD, W. A. (1925). Proc. Roy. Soc. A 109, 598.
- JELEN, A. & LINDQVIST, O. (1969). Acta Chem. Scand. 23, 3071.
- JOHNSON, C. K. (1965). ORTEP. A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations. USAEC, 1965. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- KAMENAR, B. & GRDENIĆ, D. (1962). J. Inorg. Nucl. Chem. 24, 1039.
- McDonald, R. R., Larson, A. C. & Cromer, D. T. (1964). Acta Cryst. 17, 1104.
- OKAZAKI, A. & UEDA, I. (1956). J. Phys. Soc. Japan, 11, 470.
- ORGEL, L. E. (1959). J. Chem. Soc. p. 3815.
- RENTZEPERIS, P. J. (1962). Z. Kristallogr. 117, 431.
- RUNDLE, R. E. & OLSON, D. H. (1964). Inorg. Chem. 3, 596.

tion patterns. Sadanaga & Takeda (1968) called this phenomenon the 'diffraction enhancement of symmetry', which is caused by a particular structure of the crystal. According to the latter authors, a triclinic crys-